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What is OpenMP?

 De-facto standard Application Programming Interface (API) to write shared 
memory parallel applications in C, C++, and Fortran

 Consists of Compiler Directives, Runtime routines and Environment variables

 Specification maintained by the OpenMP 
Architecture Review Board (http://www.openmp.org)

 New ARB mission statement:

 “The OpenMP ARB mission is to standardize directive-based multi-language high-
level parallelism that is performant, productive and portable.”

 OpenMP* Specification Version 4.5 was launched in Now at SC’2015

4
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OpenMP* Programming Model’s New Era
 CPUs and All forms of accelerators/coprocessors, GPU, APU, GPGPU, FPGA, and DSP 

 Heterogenous consumer devices

 Kitchen appliances, drones, signal processors, medical imaging, auto, telecom, automation, 
not just graphics engines – (Courtesy of Michael Wong (IBM) and Alexey Bataev (intel), et.al. 
LLVM Developer Conference Oct. 2105)

5
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OpenMP is widely supported by 

the industry, as well as the 

academic community

6
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Programming Models Used at NERSC
 MPI dominates

 40% of projects use OpenMP*

Courtesy of Yun (Helen) He, Alice Koniges, et. al., (NERSC) at OpenMPCon’2015  7
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What is X if Use MPI+X at NERSC
 OpenMP is about 50%, out of all choices of X

Courtesy of Yun (Helen) He, Alice Koniges, et. al., (NERSC) at OpenMPCon’2015  
8
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Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel

More cores    More Threads    Wider vectors

*Product specification for launched and shipped products available on ark.intel.com.        1. Not launched or in planning.

Parallel + SIMD is the Path Forward

OpenMP* is one of most important vehicles for the parallel + SIMD path forward  
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OpenMP* Programming Model
 Master thread spawns a team of threads / a league of thread teams 

as needed.

 Parallelism is added incrementally until desired performance is 
achieved: i.e. the sequential program evolves into a parallel 
program.

Parallel Regions

Master 
Thread A Nested 

Parallel 
region

10
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SAXPY: Coprocessor/Accelerator
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Data sharing / mapping: shared or distributed memory

A

Memory

Processor Y

Cache

A

Processor X

Cache

A
A

Memory X
Accelertor Y

A

Memory Y
Processor X

Cache

A

Shared memory Distributed memory

Threads have access to a shared memory

 for shared data

 each thread can have a temporary view of the shared 
memory (e.g. registers, cache, etc.) between 
synchronization barriers.

Threads have private memory

 for private data

 Each thread has a stack for data local to each task it 
executes

 The corresponding variable in the device 
data environment may share storage with 
the original variable

 Writes to the corresponding variable may 
alter the value of the original variable 
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OpenMP* in Clang/LLVM: A Brief History

2H 2012: Several proposals with LLVM IR extensions and late outlining

 From Intel, Hal Finkel, others

 All of them involve changes to LLVM IR and thus, require modifications of LLVM phases

 None of them got enough support in the community

October 2012: OpenMP* in Clang project

 Started by AMD*, continued by Intel

 Early FE lowering and outlining 

 OpenMP RTL calls generated in Clang

October 2015: OpenMP* 4.0 Target (Device) model supported in Clang FE

 Initial implementation available at https://github.com/clang-omp/clang_trunk

(Joint work by AMD, IBM, Intel and TI)

13
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10000ft View: High-Level Design for Moving Forward

14
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 Correctness: easy to achieve and maintain compiler intermediate states and 
consistency

 Competitive performance: compile-time and runtime performance

 Competitive code size:  generated code size and adds-on module size from Intel 
implementation.

 Composite ability: analysis module and individual loop opts can composed 
flexibility to achieve high performance 

 Debug ability: generate sufficient debug information

 Programmer friendly diagnostic and report messages   

15

LLVM OpenMP* Compiler Design Guideline



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
16

LLVM IR Intrinsic Definitions
def int_directive : Intrinsic<[], [llvm_metadata_ty],

[IntrReadWriteArgMem], "llvm.intel.directive">;

def int_directive_qual : Intrinsic<[], [llvm_metadata_ty],

[IntrReadWriteArgMem], "llvm.intel.directive.qual">;

def int_directive_qual_opnd : Intrinsic<[], [llvm_metadata_ty, llvm_any_ty],

[IntrReadWriteArgMem],  "llvm.intel.directive.qual.opnd">;

def int_directive_qual_opndlist : Intrinsic<[], [llvm_metadata_ty, llvm_vararg_ty],

[IntrReadWriteArgMem], "llvm.intel.directive.qual.opndlist">;

Each C++ obj is represented with four arguments: Value, default constructor, copy constructor and 
destructor. 

* References to constructors / destructors are required to correctly create and destroy private copies of 
variables.

Array section is represented with (2 + # of DIMs x 3) arguments: Value, # of DIMs, lower0, length0, 
stride0, lower1, length1, stride1, …
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LLVM IR Prepass
 CFG Restructuring 

 Transform parallel sections / 
worksharing sections to 
parallel loops / worksharing
loops

 Pre-privatization renaming

 Multi-versioning for different 
targets (Host, GPU and 
Coprocessors) 

 … … 

float parloop(float *a) {
int k = 0;
float x = 108.8f;

float x_temp = x;
@llvm.directive(DIR.OMP.PARALLEL.LOOP);
@llvm.directive.qual(DIR.QUAL.IS.OMP.SIMD);
@llvm.directive.qual.opnd.list(DIR.QUAL.REDUCTION.ADD, 

DIR.QUAL.OPND.VALUE, &x_temp);
@directive_qual_opnd_list(DIR_QUAL_SHARED,

DIR_QUAL_OPND_VALUE, a, "opnd.end");
{ int priv_k; //#pragma omp parallel for simd reduction(+: x) shared(a)

for (priv_k=0; priv_k<10000; priv_k++) {
x_temp = x_temp + a[priv_k] + 100.08f;

}
}
@llvm.directive(DIR.OMP.END.PARALLEL.LOOP);
x = x_temp;
return x;

}

float parloop(float *a) {
int k = 0;
float x = 108.8f;

#pragma omp parallel for simd reduction(+: x) shared(a) private(k)
for (k=0; k<10000; k++) {
x = x + a[k] + 100.08f;

}
return x;

}
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LLVM IR with Directive Intrinsics
@.str = private unnamed_addr constant [9 x i8] c"opnd.end\00", align 1
; Function Attrs: nounwind uwtable

define float @parloop(float* %a) #0 {
entry:

%x_temp = alloca float, align 4
store float 0x405B333340000000, float* %x_temp, align 4, !tbaa !1
call void @directive(i32 1) #2
call void @directive.qual(i32 28) #2
call void (i32, i32, ...)* @directive.qual.opndlist(i32 3, i32 1, float* %x_temp, i8* getelementptr inbounds ([9 x i8]* @.str, i64 0, i64 0)) #2
call void (i32, i32, ...)* @directive.qual.opndlist(i32 1, i32 1, float* %a, i8* getelementptr inbounds ([9 x i8]* @.str, i64 0, i64 0)) #2
%x_temp.promoted = load float* %x_temp, align 4, !tbaa !1
br label %for.body

for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%add17 = phi float [ %x_temp.promoted, %entry ], [ %add1, %for.body ]
%arrayidx = getelementptr inbounds float* %a, i64 %indvars.iv
%0 = load float* %arrayidx, align 4, !tbaa !1
%add = fadd float %add17, %0
%add1 = fadd float %add, 0x4059051EC0000000
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 10000
br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
store float %add1, float* %x_temp, align 4, !tbaa !1
call void @directive(i32 2) #2
%1 = load float* %x_temp, align 4, !tbaa !1
ret float %1

}
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LLVM CFG Restructuring
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LLVM IR Lowering and Outlining Passes

Intel Confidential
20

 Lowering 

 Loop transformation (e.g. loop 
collapsing)

 Generate code for atomic, critical, 
single, master, …, constructs (i.e. these 
constructs do not need outlining)

 Loop partitioning based on schedule 
type and chunk-size

 Generation code for reduction, 
lastprivate, firstprivate, copyprivate, … 
threadprivate, etc.

 Generate debug info and opt-reports

 Outlining 

 Parallel regions/loops/sections/Tasks 
(use OpenMP runtime)

 Affinity setting 

 Generate runtime control code

 Target regions (use Offload runtime)

 Cilk for loops (use Cilk runtime)

 Packing / Unpacking arguments

 Generate debug info and opt-reports
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Debugging Support

 Associate “privatized” LLVM VALUEs (variables) to original LLVM VALUEs 
(variables)

 Associate “argument” VALUEs of outlined function to original VALUEs 

 LLVM debug info generation framework has similar functionalities for 
preserving debug info for privatization and data-sharing transformation.
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A Lowering and Outlining Example (Pseudo Code)  
typedef struct {  float *x; float *a; } PARMLIST;

void __outlined_parloop(
int g_lower,  int g_upper, int g_stride, PARMLIST *parms) {
int x_reduction;   float *a;  float *x;
int t0 = 0, lower = 0,  t1 = 0, upper = 0, stride = 1;
int tid = __kmpc_global_get_thread_num();
a = parms->a; x = parms->x;
__kmpc_static_init(tid, &lower, &upper, 

&stride, g_lower, g_upper, g_stride);
x_red = 0.0f; t0 = lower; t1 = upper;
@llvm.directive(DIR.OMP.SIMD);
@llvm. directive.qual.opndlist(DIR.QUAL.REDUCTION.ADD, 

DIR.QUAL.OPND.VALUE, &x_red);
for (int k=t0; k<t1; k++) {

x_red = x_red + a[k] + 100.8f;
}
@llvm.directive(DIR.OMP.END.SIMD);
__kmpc_critical(tid);
*x = *x + x_red;

__kmpc_end_critical(tid);
return;

}

float parloop(float *a) {
float x = 108.8f;
PARMLIST thunk;

float x_temp = x;

thunk.x = &x_temp;
thunk.a = a;

if (__kmpc_ok_fork()) { 
__kmpc_fork_call(outlined_parloop, 0, 10000, 1, &thunk);

} 
else {

__outlined_parloop(0, 10000, 1, &thunk);
}
x = x_temp;
return x;

}
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DECLARED SIMD:  Function to Loop Conversion

opt –simd-function-cloning linear.ll –o linear.bc

Key Ideas:
• Produces correct scalar code for 

the function
• Treat function vectorization as 

loop vectorization

clang

#pragma omp declare simd linear(i:1) uniform(x)
int foo(int i, int x) {
return (x + i);

}

clang –c -emit-llvm –S –fopenmp-simd linear.c

linear.c

opt
linear.ll

attributes #0 = { nounwind uwtable "_ZGVxM4lu_" "_ZGVxN4lu_“ …

23
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entry:
%i.addr = alloca i32, align 4
%vec_retval = alloca <4 x i32>
%x.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%veccast = bitcast <4 x i32>* %vec_retval to i32*

simd.begin.region: 
call void @llvm.directive(metadata !7)
call void @llvm.directive.qual.opnd.i32(metadata !8, i32 4)
call void (metadata, ...) @llvm.directive.qual.opndlist(metadata !9, i32 %i)
call void @llvm.directive.qual(metadata !10)

simd.loop:
%index = phi i32 [ 0, %simd.begin.region ], [ %indvar, %simd.loop.exit ]
store i32 %x, i32* %x.addr, align 4
%0 = load i32, i32* %x.addr, align 4
%1 = load i32, i32* %i.addr, align 4
%mul = mul i32 1, %index
%add.1 = add i32 %1, %mul
%add = add nsw i32 %0, %add.1
%vec_gep = getelementptr i32, i32* %veccast, i32 %index
store i32 %add, i32* %vec_gep

simd.loop.exit:
%indvar = add nuw i32 1, %index
%vlcond = icmp ult i32 %indvar, 4

simd.end.region:
call void @llvm.directive(metadata !11)

return: 
%cast = bitcast i32* %veccast to <4 x i32>*
%vec_ret = load <4 x i32>, <4 x i32>* %cast
ret <4 x i32> %vec_ret

define __stdcall <4 x i32> @_ZGVbN4lu_foo(i32 %i, i32 %x) #0

entry:
%i.addr = alloca i32, align 4
%x.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
store i32 %x, i32* %x.addr, align 4
%0 = load i32, i32* %x.addr, align 4
%1 = load i32, i32* %i.addr, align 4
%add = add nsw i32 %0, %1
ret i32 %add

ORIGINAL BODY

24
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Vectorizing for Loop with Math Function Calls

Before Vectorization:

( (F32) t0(F32) ) = sinf{ic=SINF}.imf_attrs(max-error=0.6 domain-exclusion=0 valid-status-bits=false precision=high)( 
(F32) (EXPR_CONV.SI32.F32(i.219_V$3(SI32)))(F32) ); [CALL_CONVENTION_UNIX_ABI]

After Vectorization:

( (MS128) t107(MS128) ) = __svml_sinf4{ic=VX_VMLS_SIN4}.imf_attrs(max-error=0.6 domain-exclusion=0 valid-
status-bits=false precision=high)( (MS128) t108(MS128) );  [CALL_CONVENTION_UNIX_ABI]

Assembly:
..B1.2:                         # Preds ..B1.8 ..B1.7

# Execution count [5.56e+00]
cvtdq2ps  %xmm8, %xmm0                                  #36.3
call      __svml_sinf4_ha #36.3           # LOE rbx r12 r13 r14 r15 xmm0 xmm8 xmm9

icc sinf.c –fimf-max-error=0.6 –fimf-precision=high

#pragma omp simd 
for ( i = 0; i < 1000; i++) {

array[i] = sinf(i);
}

25
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Prototype Implementation

26

Before Vectorization:
%call = call float @sinf(float %div) #4, !dbg !22

Adding a Clang FE patch would be something like:
%call = call float @llvm.sin.f32(float %div) #4, !dbg !22

After Vectorization:
%4 = call <4 x float> @llvm.sin.v4f32(<4 x float> %3), !dbg !27, !imf-precision !10, !imf-max-error !11

!10 = !{!“imf-precision=high"}
!11 = !{!“imf-max-error=0.6"}

After SVML translation pass:
%3 = call <4 x float> @__svml_sinf4_ha(<4 x float> %2)

26
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Prototype Implementation with XMM

27

vector.body:                                      ; preds = %vector.body, %entry
%index = phi i64 [ 0, %entry ], [ %index.next, %vector.body ], !dbg !2
%0 = trunc i64 %index to i32, !dbg !7
%broadcast.splatinsert6 = insertelement <8 x i32> undef, i32 %0, i32 0, !dbg !7
%broadcast.splat7 = shufflevector <8 x i32> %broadcast.splatinsert6, <8 x i32> undef, <8 x i32> zeroinitializer, !dbg

!7
%induction8 = add <8 x i32> %broadcast.splat7, <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, !dbg !7
%1 = sitofp <8 x i32> %induction8 to <8 x float>, !dbg !7
%shuffle = shufflevector <8 x float> %1, <8 x float> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%vcall = call <4 x float> @__svml_sinf4_ha(<4 x float> %shuffle)
%shuffle.1 = shufflevector <8 x float> %1, <8 x float> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%vcall.2 = call <4 x float> @__svml_sinf4_ha(<4 x float> %shuffle.1)
%shufflecomb = shufflevector <4 x float> %vcall, <4 x float> %vcall.2, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, 

i32 5, i32 6, i32 7>
%2 = getelementptr inbounds float, float* %array, i64 %index, !dbg !8
%3 = bitcast float* %2 to <8 x float>*, !dbg !9
store <8 x float> %shufflecomb, <8 x float>* %3, align 4, !dbg !9, !tbaa !10
%index.next = add i64 %index, 8, !dbg !2
%4 = icmp eq i64 %index.next, 1000, !dbg !2
br i1 %4, label %for.end, label %vector.body, !dbg !2, !llvm.loop !14

#pragma omp simd simdlen(8)
for ( i = 0; i < 1000; i++) {

array[i] = sinf(i);
}
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Summary
 OpenMP is evolving with a set of new features that needs scalar optimization, 

vectorization and loop optimizations to be seamlessly integrated with 
parallelization (privatization, lowering, outlining, … etc.) 

 Multiple languages support with effective engineering and maintaining cost

 Path-finding efforts to study feasibility of the Back-End solution

 Minimal extensions for LLVM IR

 Minimal Impact on LLVM infrastructure and optimizations

 Getting optimal threaded code to leverage target HW potential 

 Targeting modern CPUs, Coprocessors, GPUs, DSP, FPGA, … etc.
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Thanks & Questions?
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