
Moving Forward with OpenMP* Implementation in
LLVM and Clang

Xinmin Tian, Alexey Bataev, Andrey S. Bokhanko, James H. Cownie, Ayal Zaks
Intel Corporation
November 15th, 2015

SC’2015 LLVM-HPC2 Workshop

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Notice and Disclaimers
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION
CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT
OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

For more complete information about performance and benchmark results, visit Performance Test Disclosure

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar
performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Intel processor numbers are not a measure of performance.

Processor numbers differentiate features within each processor family, not across different processor families: Go to: Learn About Intel® Processor Numbers

Intel® Advanced Vector Extensions (Intel® AVX)* are designed to achieve higher throughput to certain integer and floating point operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a)
some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and
system configuration and you should consult your system manufacturer for more information.

*Intel® Advanced Vector Extensions refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512. For more information on Intel® Turbo Boost Technology 2.0, visit http://www.intel.com/go/turbo

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2014 Intel Corporation. All rights reserved . Intel, the Intel logo, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the
property of others.

Copyright © 2014 Intel Corporation. All rights reserved
2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Agenda

OpenMP* Programming Model’s New Era

Programming Model Overview

OpenMP* Support in Clang/LLVM: A Brief History

10000ft View: A High-Level Design for Moving Forward

 Design Guidelines

 Back-End: LLVM Prepass, Lowering and Outlining

 An Example

OpenMP* SIMD extension support in LLVM

 Declare SIMD support

 Vectorizng Loops with math function calls

Summary

3
* Other brands and names are the property of their respective
owners.

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What is OpenMP?

 De-facto standard Application Programming Interface (API) to write shared
memory parallel applications in C, C++, and Fortran

 Consists of Compiler Directives, Runtime routines and Environment variables

 Specification maintained by the OpenMP
Architecture Review Board (http://www.openmp.org)

 New ARB mission statement:

 “The OpenMP ARB mission is to standardize directive-based multi-language high-
level parallelism that is performant, productive and portable.”

 OpenMP* Specification Version 4.5 was launched in Now at SC’2015

4

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP* Programming Model’s New Era
 CPUs and All forms of accelerators/coprocessors, GPU, APU, GPGPU, FPGA, and DSP

 Heterogenous consumer devices

 Kitchen appliances, drones, signal processors, medical imaging, auto, telecom, automation,
not just graphics engines – (Courtesy of Michael Wong (IBM) and Alexey Bataev (intel), et.al.
LLVM Developer Conference Oct. 2105)

5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP is widely supported by

the industry, as well as the

academic community

6

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Programming Models Used at NERSC
 MPI dominates

 40% of projects use OpenMP*

Courtesy of Yun (Helen) He, Alice Koniges, et. al., (NERSC) at OpenMPCon’2015 7

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What is X if Use MPI+X at NERSC
 OpenMP is about 50%, out of all choices of X

Courtesy of Yun (Helen) He, Alice Koniges, et. al., (NERSC) at OpenMPCon’2015
8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel

More cores  More Threads  Wider vectors

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning.

Parallel + SIMD is the Path Forward

OpenMP* is one of most important vehicles for the parallel + SIMD path forward

Intel® Xeon®

processor

64-bit

Intel® Xeon®

processor

5100
series

Intel® Xeon®

processor

5500
series

Intel® Xeon®

processor

5600
series

Intel® Xeon®

processor
code-named

Sandy
Bridge EP

Intel® Xeon®

processor
code-named

Ivy Bridge
EP

Intel® Xeon®

processor
code-named

Haswell
EP

Intel® Xeon
Processor

codenamed
Skylake

EP

Core(s) 1 2 4 6 8 12 18 28

Threads 2 2 8 12 16 24 36 56

SIMD Width 128 128 128 128 256 256 256 512

Intel® Xeon Phi™
coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &
coprocessor

Knights
Landing1

61 70+

244 280+

512 512

9

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP* Programming Model
 Master thread spawns a team of threads / a league of thread teams

as needed.

 Parallelism is added incrementally until desired performance is
achieved: i.e. the sequential program evolves into a parallel
program.

Parallel Regions

Master
Thread A Nested

Parallel
region

10

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

11

SAXPY: Coprocessor/Accelerator

11

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
12

Data sharing / mapping: shared or distributed memory

A

Memory

Processor Y

Cache

A

Processor X

Cache

A
A

Memory X
Accelertor Y

A

Memory Y
Processor X

Cache

A

Shared memory Distributed memory

Threads have access to a shared memory

 for shared data

 each thread can have a temporary view of the shared
memory (e.g. registers, cache, etc.) between
synchronization barriers.

Threads have private memory

 for private data

 Each thread has a stack for data local to each task it
executes

 The corresponding variable in the device
data environment may share storage with
the original variable

 Writes to the corresponding variable may
alter the value of the original variable

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP* in Clang/LLVM: A Brief History

2H 2012: Several proposals with LLVM IR extensions and late outlining

 From Intel, Hal Finkel, others

 All of them involve changes to LLVM IR and thus, require modifications of LLVM phases

 None of them got enough support in the community

October 2012: OpenMP* in Clang project

 Started by AMD*, continued by Intel

 Early FE lowering and outlining

 OpenMP RTL calls generated in Clang

October 2015: OpenMP* 4.0 Target (Device) model supported in Clang FE

 Initial implementation available at https://github.com/clang-omp/clang_trunk

(Joint work by AMD, IBM, Intel and TI)

13

* Other brands and names are the property of their respective
owners. 13

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

10000ft View: High-Level Design for Moving Forward

14

Par/Vec Prepass Loop fusion

Loop distribution

Loop Unrolling

LoopOpts

ScalarOpts

LLVM IR

LLVM IR

O0/O1

O2 &
above

LLVM IR
Lowering and
Outlining for

OpenMP, Offload

LLVM IR
Lowering and
Outlining for

OpenMP, Offload

Annotated par-loop for Annotated par-loop for
auto-parallelization

Vectorization
(explicit / auto)
Vectorization

(explicit / auto)

Clang C/C++ FE Fortran FE

LLVM IR

ScalarOptsScalarOpts LLVM CGLLVM CGLLVM IR
O0/O1

14

Community’s or Vendor’s
Loop Optimizers

Community’s or
Vendor’s Vectoizer

……

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Correctness: easy to achieve and maintain compiler intermediate states and
consistency

 Competitive performance: compile-time and runtime performance

 Competitive code size: generated code size and adds-on module size from Intel
implementation.

 Composite ability: analysis module and individual loop opts can composed
flexibility to achieve high performance

 Debug ability: generate sufficient debug information

 Programmer friendly diagnostic and report messages

15

LLVM OpenMP* Compiler Design Guideline

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
16

LLVM IR Intrinsic Definitions
def int_directive : Intrinsic<[], [llvm_metadata_ty],

[IntrReadWriteArgMem], "llvm.intel.directive">;

def int_directive_qual : Intrinsic<[], [llvm_metadata_ty],

[IntrReadWriteArgMem], "llvm.intel.directive.qual">;

def int_directive_qual_opnd : Intrinsic<[], [llvm_metadata_ty, llvm_any_ty],

[IntrReadWriteArgMem], "llvm.intel.directive.qual.opnd">;

def int_directive_qual_opndlist : Intrinsic<[], [llvm_metadata_ty, llvm_vararg_ty],

[IntrReadWriteArgMem], "llvm.intel.directive.qual.opndlist">;

Each C++ obj is represented with four arguments: Value, default constructor, copy constructor and
destructor.

* References to constructors / destructors are required to correctly create and destroy private copies of
variables.

Array section is represented with (2 + # of DIMs x 3) arguments: Value, # of DIMs, lower0, length0,
stride0, lower1, length1, stride1, …

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
17

LLVM IR Prepass
 CFG Restructuring

 Transform parallel sections /
worksharing sections to
parallel loops / worksharing
loops

 Pre-privatization renaming

 Multi-versioning for different
targets (Host, GPU and
Coprocessors)

 … …

float parloop(float *a) {
int k = 0;
float x = 108.8f;

float x_temp = x;
@llvm.directive(DIR.OMP.PARALLEL.LOOP);
@llvm.directive.qual(DIR.QUAL.IS.OMP.SIMD);
@llvm.directive.qual.opnd.list(DIR.QUAL.REDUCTION.ADD,

DIR.QUAL.OPND.VALUE, &x_temp);
@directive_qual_opnd_list(DIR_QUAL_SHARED,

DIR_QUAL_OPND_VALUE, a, "opnd.end");
{ int priv_k; //#pragma omp parallel for simd reduction(+: x) shared(a)

for (priv_k=0; priv_k<10000; priv_k++) {
x_temp = x_temp + a[priv_k] + 100.08f;

}
}
@llvm.directive(DIR.OMP.END.PARALLEL.LOOP);
x = x_temp;
return x;

}

float parloop(float *a) {
int k = 0;
float x = 108.8f;

#pragma omp parallel for simd reduction(+: x) shared(a) private(k)
for (k=0; k<10000; k++) {
x = x + a[k] + 100.08f;

}
return x;

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
18

LLVM IR with Directive Intrinsics
@.str = private unnamed_addr constant [9 x i8] c"opnd.end\00", align 1
; Function Attrs: nounwind uwtable

define float @parloop(float* %a) #0 {
entry:

%x_temp = alloca float, align 4
store float 0x405B333340000000, float* %x_temp, align 4, !tbaa !1
call void @directive(i32 1) #2
call void @directive.qual(i32 28) #2
call void (i32, i32, ...)* @directive.qual.opndlist(i32 3, i32 1, float* %x_temp, i8* getelementptr inbounds ([9 x i8]* @.str, i64 0, i64 0)) #2
call void (i32, i32, ...)* @directive.qual.opndlist(i32 1, i32 1, float* %a, i8* getelementptr inbounds ([9 x i8]* @.str, i64 0, i64 0)) #2
%x_temp.promoted = load float* %x_temp, align 4, !tbaa !1
br label %for.body

for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [0, %entry], [%indvars.iv.next, %for.body]
%add17 = phi float [%x_temp.promoted, %entry], [%add1, %for.body]
%arrayidx = getelementptr inbounds float* %a, i64 %indvars.iv
%0 = load float* %arrayidx, align 4, !tbaa !1
%add = fadd float %add17, %0
%add1 = fadd float %add, 0x4059051EC0000000
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 10000
br i1 %exitcond, label %for.end, label %for.body

for.end: ; preds = %for.body
store float %add1, float* %x_temp, align 4, !tbaa !1
call void @directive(i32 2) #2
%1 = load float* %x_temp, align 4, !tbaa !1
ret float %1

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
19

LLVM CFG Restructuring

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LLVM IR Lowering and Outlining Passes

Intel Confidential
20

 Lowering

 Loop transformation (e.g. loop
collapsing)

 Generate code for atomic, critical,
single, master, …, constructs (i.e. these
constructs do not need outlining)

 Loop partitioning based on schedule
type and chunk-size

 Generation code for reduction,
lastprivate, firstprivate, copyprivate, …
threadprivate, etc.

 Generate debug info and opt-reports

 Outlining

 Parallel regions/loops/sections/Tasks
(use OpenMP runtime)

 Affinity setting

 Generate runtime control code

 Target regions (use Offload runtime)

 Cilk for loops (use Cilk runtime)

 Packing / Unpacking arguments

 Generate debug info and opt-reports

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
21

Debugging Support

 Associate “privatized” LLVM VALUEs (variables) to original LLVM VALUEs
(variables)

 Associate “argument” VALUEs of outlined function to original VALUEs

 LLVM debug info generation framework has similar functionalities for
preserving debug info for privatization and data-sharing transformation.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
22

A Lowering and Outlining Example (Pseudo Code)
typedef struct { float *x; float *a; } PARMLIST;

void __outlined_parloop(
int g_lower, int g_upper, int g_stride, PARMLIST *parms) {
int x_reduction; float *a; float *x;
int t0 = 0, lower = 0, t1 = 0, upper = 0, stride = 1;
int tid = __kmpc_global_get_thread_num();
a = parms->a; x = parms->x;
__kmpc_static_init(tid, &lower, &upper,

&stride, g_lower, g_upper, g_stride);
x_red = 0.0f; t0 = lower; t1 = upper;
@llvm.directive(DIR.OMP.SIMD);
@llvm. directive.qual.opndlist(DIR.QUAL.REDUCTION.ADD,

DIR.QUAL.OPND.VALUE, &x_red);
for (int k=t0; k<t1; k++) {

x_red = x_red + a[k] + 100.8f;
}
@llvm.directive(DIR.OMP.END.SIMD);
__kmpc_critical(tid);
*x = *x + x_red;

__kmpc_end_critical(tid);
return;

}

float parloop(float *a) {
float x = 108.8f;
PARMLIST thunk;

float x_temp = x;

thunk.x = &x_temp;
thunk.a = a;

if (__kmpc_ok_fork()) {
__kmpc_fork_call(outlined_parloop, 0, 10000, 1, &thunk);

}
else {

__outlined_parloop(0, 10000, 1, &thunk);
}
x = x_temp;
return x;

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

DECLARED SIMD: Function to Loop Conversion

opt –simd-function-cloning linear.ll –o linear.bc

Key Ideas:
• Produces correct scalar code for

the function
• Treat function vectorization as

loop vectorization

clang

#pragma omp declare simd linear(i:1) uniform(x)
int foo(int i, int x) {
return (x + i);

}

clang –c -emit-llvm –S –fopenmp-simd linear.c

linear.c

opt
linear.ll

attributes #0 = { nounwind uwtable "_ZGVxM4lu_" "_ZGVxN4lu_“ …

23

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

entry:
%i.addr = alloca i32, align 4
%vec_retval = alloca <4 x i32>
%x.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%veccast = bitcast <4 x i32>* %vec_retval to i32*

simd.begin.region:
call void @llvm.directive(metadata !7)
call void @llvm.directive.qual.opnd.i32(metadata !8, i32 4)
call void (metadata, ...) @llvm.directive.qual.opndlist(metadata !9, i32 %i)
call void @llvm.directive.qual(metadata !10)

simd.loop:
%index = phi i32 [0, %simd.begin.region], [%indvar, %simd.loop.exit]
store i32 %x, i32* %x.addr, align 4
%0 = load i32, i32* %x.addr, align 4
%1 = load i32, i32* %i.addr, align 4
%mul = mul i32 1, %index
%add.1 = add i32 %1, %mul
%add = add nsw i32 %0, %add.1
%vec_gep = getelementptr i32, i32* %veccast, i32 %index
store i32 %add, i32* %vec_gep

simd.loop.exit:
%indvar = add nuw i32 1, %index
%vlcond = icmp ult i32 %indvar, 4

simd.end.region:
call void @llvm.directive(metadata !11)

return:
%cast = bitcast i32* %veccast to <4 x i32>*
%vec_ret = load <4 x i32>, <4 x i32>* %cast
ret <4 x i32> %vec_ret

define __stdcall <4 x i32> @_ZGVbN4lu_foo(i32 %i, i32 %x) #0

entry:
%i.addr = alloca i32, align 4
%x.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
store i32 %x, i32* %x.addr, align 4
%0 = load i32, i32* %x.addr, align 4
%1 = load i32, i32* %i.addr, align 4
%add = add nsw i32 %0, %1
ret i32 %add

ORIGINAL BODY

24

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorizing for Loop with Math Function Calls

Before Vectorization:

((F32) t0(F32)) = sinf{ic=SINF}.imf_attrs(max-error=0.6 domain-exclusion=0 valid-status-bits=false precision=high)(
(F32) (EXPR_CONV.SI32.F32(i.219_V$3(SI32)))(F32)); [CALL_CONVENTION_UNIX_ABI]

After Vectorization:

((MS128) t107(MS128)) = __svml_sinf4{ic=VX_VMLS_SIN4}.imf_attrs(max-error=0.6 domain-exclusion=0 valid-
status-bits=false precision=high)((MS128) t108(MS128)); [CALL_CONVENTION_UNIX_ABI]

Assembly:
..B1.2: # Preds ..B1.8 ..B1.7

Execution count [5.56e+00]
cvtdq2ps %xmm8, %xmm0 #36.3
call __svml_sinf4_ha #36.3 # LOE rbx r12 r13 r14 r15 xmm0 xmm8 xmm9

icc sinf.c –fimf-max-error=0.6 –fimf-precision=high

#pragma omp simd
for (i = 0; i < 1000; i++) {

array[i] = sinf(i);
}

25

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prototype Implementation

26

Before Vectorization:
%call = call float @sinf(float %div) #4, !dbg !22

Adding a Clang FE patch would be something like:
%call = call float @llvm.sin.f32(float %div) #4, !dbg !22

After Vectorization:
%4 = call <4 x float> @llvm.sin.v4f32(<4 x float> %3), !dbg !27, !imf-precision !10, !imf-max-error !11

!10 = !{!“imf-precision=high"}
!11 = !{!“imf-max-error=0.6"}

After SVML translation pass:
%3 = call <4 x float> @__svml_sinf4_ha(<4 x float> %2)

26

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prototype Implementation with XMM

27

vector.body: ; preds = %vector.body, %entry
%index = phi i64 [0, %entry], [%index.next, %vector.body], !dbg !2
%0 = trunc i64 %index to i32, !dbg !7
%broadcast.splatinsert6 = insertelement <8 x i32> undef, i32 %0, i32 0, !dbg !7
%broadcast.splat7 = shufflevector <8 x i32> %broadcast.splatinsert6, <8 x i32> undef, <8 x i32> zeroinitializer, !dbg

!7
%induction8 = add <8 x i32> %broadcast.splat7, <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, !dbg !7
%1 = sitofp <8 x i32> %induction8 to <8 x float>, !dbg !7
%shuffle = shufflevector <8 x float> %1, <8 x float> undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
%vcall = call <4 x float> @__svml_sinf4_ha(<4 x float> %shuffle)
%shuffle.1 = shufflevector <8 x float> %1, <8 x float> undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
%vcall.2 = call <4 x float> @__svml_sinf4_ha(<4 x float> %shuffle.1)
%shufflecomb = shufflevector <4 x float> %vcall, <4 x float> %vcall.2, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4,

i32 5, i32 6, i32 7>
%2 = getelementptr inbounds float, float* %array, i64 %index, !dbg !8
%3 = bitcast float* %2 to <8 x float>*, !dbg !9
store <8 x float> %shufflecomb, <8 x float>* %3, align 4, !dbg !9, !tbaa !10
%index.next = add i64 %index, 8, !dbg !2
%4 = icmp eq i64 %index.next, 1000, !dbg !2
br i1 %4, label %for.end, label %vector.body, !dbg !2, !llvm.loop !14

#pragma omp simd simdlen(8)
for (i = 0; i < 1000; i++) {

array[i] = sinf(i);
}

27

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Summary
 OpenMP is evolving with a set of new features that needs scalar optimization,

vectorization and loop optimizations to be seamlessly integrated with
parallelization (privatization, lowering, outlining, … etc.)

 Multiple languages support with effective engineering and maintaining cost

 Path-finding efforts to study feasibility of the Back-End solution

 Minimal extensions for LLVM IR

 Minimal Impact on LLVM infrastructure and optimizations

 Getting optimal threaded code to leverage target HW potential

 Targeting modern CPUs, Coprocessors, GPUs, DSP, FPGA, … etc.

28

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Thanks & Questions?

29

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice.

Notice revision #20110804

30

