The Future of GPU/Accelerator

Programming Models
LLVM HPC 2015

Michael Wong (IBM)

michaelw@ca.ilbm.com; http:://wongmichael.com
http://isocpp.org/wiki/fag/wg2l:michael-wong
IBM and Canadian C++ Standard Committee HoD

OpenMP CEO
Chair of WG21 SG5 Transactional Memory , SG14 Games/Low Latency
Director, Vice President of ISOCPP.org

Vice Chair Standards Council of Canada Programming Languages

mailto:michaelw@ca.ibm.com�

Acknowledgement and Disclaimer

Numerous people internal and external to the
original OpenMP group, In industry and academia,
have made contributions, influenced ideas,
written part of this presentations, and offered
feedbacks to form part of this talk.

I'even lifted this acknowledgement and
disclaimer from some of them.

But I claim all credit for errors, and stupid
mistakes. These are mine, all mine!

—

Legal Disclaimer

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, PowerPC and the IBM logo are trademarks
or registered trademarks of IBM or its
subsidiaries Iin the United States and other
countries.

Other company, product, and service names
may be trademarks or service marks of others.

Agenda

e Clang/OpenMP Multi-company collaboration
e What Now?

e SG14

e C++ Std GPU Accelerator Model

OpenMP Mission Statement
changed in 2013

eOpenMP’s new mission statement

—“Standardize directive-based multi-language high-
level parallelism that is performant, productive
and portable”

—Updated from

e"Standardize and unify shared memory, thread-level
parallelism for HPC”

5

OpenMP in Clang update

| Chair Weekly OpenMP Clang review WG (Intel, IBM, AMD, Tl, Micron) to
help speedup OpenMP upstream into clang: April 2015-on going

—Joint code reviews, code refactoring
—Delivered full OpenMP 3.1 into Clang 3.7 (default lib is still GCC OpenMP)
—Added U of Houston OpenMP tests into clang

—IBM team Delivered changes for OpenMP RT for PPC, other teams added their
platform/architecture

—Released Joint design on Multi-device target interface for LLVM to llvm-dev
for comment

—LLVM developer Conf Oct 2015 talk:

e http://llvm.org/devmtg/2015-10/slides/WongBataev-OpenMPGPUAcceleratorsComingOfAgelnClang.pdf

e https://www.youtube.com/watch?v=dCdOal3asx8&list=PL R5A0IGi1AA4Lv2bBFSwhgDaHvvpVU21&index
=18

I\/Ian1¥ Participa

e Ajay Jayaraj,

eAlexander Musman, Intel
eAlex Eichenberger, IBM
eAlexey Bataev, Intel
eAndrey Bokhanko, Intel
eCarlo Bertolli, IBM

eEric Stotzer, Tl
eGuansong Zhang, AMD
eHal Finkel, ANL

e|lia Verbyn, Intel

eJames Cownie, Intel

eYaoqing Gao, IBM

nts/companies
eKelvin Li, IBM

eKevin O’Brien, IBM
eSamuel Antao, IBM
eSergey Ostanevich, Intel
eSunita Chandrasekaran, UH
eMichael Wong, IBM
e\Wang Chan, IBM
eRobert Ho, IBM

e\Wael Yehia, IBM
eEttore Tiotto, IBM
eMelanie Ullmer, IBM
eKevin Smith, Intel

The codebase

LLVM main repository Clang-OMP repository
http://llvm.org http://clang-omp.github.io
Clang/LLVM

Version 3.5 Shapshei— Initial version

D

* All OpenMP 3.1 l fﬁggﬁgggenl';"r:
Version 3.7 merged aturesto -1ang
=r------=- — = Current version E
Version 3.8 Trunk ’(' I _N_o;vrne_rg_inzg T o OpenMP 4

OpenMP 4.0 offloading
e How to use it: S p t

— Grab the latest source files and install LLVM as usual

— Use the right options to specify host and target machines, e.g.: SFE))GHMP
S clang —fopenmp —target powerpc64le-ibm-linux-gnu —mcpu pwr8 SUpp t

—omptargets=nvptx64sm_ 35-nvidia-cuda <source Ffiles>

Offloading in OpenMP — Impl. components

Input
Program

C/C++

OpenMP
—_ enabled

compiler

Device runtime

Host runtime library

Target agnostic
Host component
component 2
Target API
\ % \ 4
Operating System Device

Driver

_____ >

library
Host
machine
‘ Device
Device

Offloading iIn OpenMP — Impl.

Input
Program

C/C++

—>

Device runtime
library

Host runtime library

Target agnostic
Host component
component
A 4

Operating System

Clang with OpenI\/IP

e Compiler actions:

Driver preprocesses input source files using
host/target preprocessor

e Header files may be in different places

¢ We may revisit this in the future
For each source file, the driver spawns a job
using the host toolchain and an additional job
for each target specified by the user
Flags informing the frontend that we are
compiling code for a target so only the relevant
target regions are considered
Target linker creates a self-contained (no
undefined symbols) image file
Target image file is embedded “as is” by the
host linker into the host fat binary

The host linker is provided with information to
generate the symbols required by the RTL

| a.cpp | b.cpp |
Host Host Target Target
Preiroc. Preiroc. Compiler . Compiler
Host Host Target Target
Compiler Compiler | - Compiler Compiler
+ I—I*ci- Ta*n*l- Tarocet
L 1irvou IUIS\-L IUIS\-L
Assemble Assemble Assemble Assemble

Target
Linker

Offloading in Clang: Current Status

e|nitial implementation available at
nttps://github.com/clang-omp/clang trunk

*First patches are committed to trunk

— Support for target constructs parsing/sema/codegen for host

eSeveral patches are under review

—Support for new driver option
—Offloading descriptor registration and device codegen

https://github.com/clang-omp/clang_trunk�

heterogeneous device model

e OpenMP 4.0 supports accelerators/coprocessors

e Device model:
— one host
— multiple acclerators / coprocessors of the same kind

Coprocessors

Data mapping: shared or distributed memory

Shared memory

e The corresponding variable in the

Memory

device data environment may share - Memory Y

storage with the original variable.
> \

* Writes to the corresponding variable
may alter the value of the original

variable.
14

OpenMP 4.0 Device Constructs

Execute code on a target device
— omp target [clause[][.,] clause],.]
structured-block
— omp declare target
[function-definitions-or-declarations]
Map variables to a target device
— map (Imap-type:] list) // map clause

map-type := alloc | tofrom | to | from

— omp target data [clause[][,] clause],.]
structured-block

— omp target update [clause[][.,] clause],..]
— omp declare target
[variable-definitions-or-declarations]
Workshare for acceleration

— omp teams [clause[[,] clause],..]
structured-block

— omp distribute [clause[[.,] clause],..]
for-loops

SAXPY: Serial (host)

const char* argv[]) {

int main(int argc,
* sizeof (float))

float *x = (float*) malloc(n g
float *y = (float*) malloc(n * sizecf(float)):;
// Define scalars n, a, b & initialize x, Yy

for (int 41 = 0; i < n; ++1i){
yvIlil] = a*x[4i] + y[i]~

free(x); free(y):; return 0;

SAXPY: Serial (host)

int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizecf(float)):;
// Define scalars n, a, b & initialize x, ¥y

#pragma omp target data map(to:x[0:n])

{

for (int i1 = 0; i < n; ++i) {
yv[i] = a*x[i1] + y[1]:
}

free(x); free(y); return 0;

SAXPY:
Coprocessor/Accelerator

int main (int argc, const char* argv[])

float *x = (f£flcocat*) malloc(n * Slzeof(float));

float *y = (float*) malloc(n * sizeof (float)):;

// Define scalars n, a, b & initialize x, ¥y
#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:vy)
#pragma omp teams num_ teams (num blocks) num threads (nthreads)
[} l' [} I' 1 'I [|
1 l all do the same l 1
- | S 0 | | A .
for (int i = 0; i < n; 1 += num blocks) {

for (int j = i; j < i + num blocks; J++) {
y[31]l = a*x[j] + yl[dl:

free(x); free(y); return 0;

SAXPY:
Coprocessor/Accelerator

int main (int argc, const char* argvI[]) {

float *x = (float*) malloc(n * sizeof(float)):
float *y = (float*) malloc(n * sizeof(flcat)):
// Define scalars n, a, b & initialize x, ¥y
#fpragma omp target data map (to:x[0:n])
#pragma omp target map(tofrom:y)
#pragma omp teams num teams (num blocks) num threads (bsize)
poaMaonaaMasnas ans
l all do the same l
| | | A | | | R

#0 ma omp istribute

(int i = 0; 1 < n; i += num blocks) {

i
workshare (w/o barrier)

| S S | 0 50 | L [
parallel for
9 = di; 94 < i + num blocks; J++) {

IIIIIIIIIIIIIIIImml
workshare (w/ barrier) l
\lle | hasaad | Massad | hassad |haasad | ““l

y[J] a*x[J] + yI[J1;

K Q

ra
fo

.

N

#toragma om
for (i

50| &

P}

free(x); free(y); return 0; }

Building Fat Binary

Clang generates objects for each target

Target toolchains combine objects into target-

dependent binaries

Host linker combines host + target-dependent binaries

into an executable (Fat Binary)

New driver command-line option
-omptargets=T1,...,Tn

LLVM
Generated
host code

Data

Xeon Phi Code

GPU Code

DSP Code

Fat Binary

clang -fopenmp -omptargets=nvptx64-nvidia-cuda,x86-pc-linux-gnu foo.c bar.c -o

foobar.bin

Heterogeneous Execution of
Fat Binary

Data
LLVM Xeon Phi Code
Generated host
code GPU Code
DSP Code

Fat Binary

Libomptarget and offload RTL

e Source code available at https://github.com/clang-
omp/libomptarget

 Planned to be upstreamed

e Supported platforms

— libomptarget
» Platform neutral implementation (tested on Linux for x86-64, PowerPC")
* NVIDIA® (Tested with CUDA™ compilation tools V7.0.27)

— Offload target RTL
e x86-64, PowerPC, NVIDIA

*Other names and brands may be claimed as the property of others.

https://github.com/clang-omp/libomptarget�
https://github.com/clang-omp/libomptarget�

What did we learn?

e Multi-Vendor/University collaboration works
even outside of ISO

eSupport separate vendor-dependent target

RTL to enable ot

eProduction com
and 118N for mu

ner programming models
oilers need support for L10ON

tiple countries and languages

Future plans

eClang 3.8 (~“Feb, 2016): trunk switches to clang OpenMP lib,
upstream OpenMP 4.0 with focus on Accelerator delivery; start
code dropping for OpenMP 4.5

eClang 3.9 (~YAug 2016): Complete OpenMP 4.0 and continue to Add
OpenMP 4.5 functionality

*Clang 4.0 (~“Feb 2017): clang/llvm becomes reference compiler;
follow OpenMP ratification with collaborated contribution?

2013

C++14 Implemented in Clang 3.5 ’ OpenMP closely?
9/3/2014 2/28/2017
> OpenMP 4.5 Ratified/Release C++17 Ratify?
C++14 Ratify 11/12/2015 5/31/2017
5/31/2014 Op&riviF?5.0
DatRaded R |
C++14 Released > 11/12/3 1201e7ase
12/31/2014
C++17
Clang 3.5 Release
> Implemented
8/31/2014 in Clang 4.0?
OpenMP 4.0 Ratified/Release 2/28/2017
> 11/12/2013
Today
v
2014 2015 2016 2017 2017
8/31/2015 2/28/2017
’ Clang 3.7 > Clang 4.0
Release Release?
2/29/2016
Release 8/31/2016

Clang 3.6 Release

Clang 4.0 becomes OpenMP
reference compiler and tracks

Clang 3.9 Release?

OpenMP 4.0 Ratified/Release
11/12/2013

2013

'Clang 3.8 Release? C++17
Clang 3.5 Release

> 2/29/2016 Implemented
8/31/2014 Clang 3.9 in Clang 4.0?
Release?
Clang 3.6 Release > 2/28/2017
D> 8/31/2016
2/28/2015

Clang 4.0 becomes OpenMP
> reference compiler and tracks

C++14 Implemented in Clang 3.5 OpenMP closely?
9/3/2014 Clang 3.7 HaRgq's
P> Releasgenmp 4.5 Ratified/Releasd® Re1ease2,17 ratify?
shr/ 2122
C++14 Ratify 19392/2015 Q}41/2017
5/31/2014 Op&VIFT5.0
St ?
C++14 Released > 11;:;/;;;11?5&
12/31/2014
‘ 2014 ‘ 2015 ‘ 2016 2017 2017
A
Today

Upstream OpenMP 3.1 to clang 3.5, 3.6, 3.7 from Intel OpenMP/clang
8/31/2015

5/1/2014

Upstream OpenMP 4.0 to clang 3.8, 3.9? from Intel OpenMP/clang

9/1/2015 8/31/2016

Direct code drop of OpenMP 4.5 to clang 3.8, 3.9, 4.0?

11/1/2015 2/28/2017

Agenda

e Clang/OpenMP Multi-company collaboration
e What Now?

e SG14

e C++ Std GPU Accelerator Model

27

What now?
eThe new C++11 Std is

—1353 pages compared to 817 pages in C++03
*The new C++14 Std is
—1373 pages (N3937), vs the free n3972

eThe new Cl1lis
—701 pages compared to 550 pages in C99
eOpenMP 3.1is
—160 pages and growing
eOpenMP 4.0 is
—320 pages
eOpenMP 4.5 is
—359 pages

PPL

Parallel Patterns Library

" Intel

Threading
Building Blocks

OpenACC.

DIRECTIVES FOR ACCELERATORS

Will the two galaxies ever join?

- .-.'I-_ H.".; r;-'-"ﬂ.l ':r_-] !.'_'..'-'
. g

OH, East is East, and West is West,
and never the twain shall meet...
-Rudyard Kipling

What did we learn from the

OpenMP Accelerator model?
eConsumer threads needed

eMore concurrency controls needed
eExcellent HPC domain usage
eSome use in financials

ebut almost none in consumers and
commercial applications

eC++ support? Can it get better?

P e g

== .] o
gl = P i Sy
o e ”]
— ‘ﬁ/ B i =
oy = i = T i e -
X v il e é -
- - oo : =

Its like the difference between:

An Aircraft Carrier Battle Group (1SO)
And a Cruiser (Consortium: OpenMP)

And a Destroyer (Company Specific
language)

C++ support for Accelerators

eMemory allocation

eTemplates

eExceptions

ePolymorphism

eCurrent Technical Specifications
—Concepts, Parallelism, Concurrency, TM

Programming GPU/Accelerators

* OpenGL
e DirectX

* CUDA

* OpenCL

e OpenMP
* OpenACC
e C++ AMP
e HPX

e HSA

e SYCL

e Vulkan

e A preview of C++
WG21 Accelerator
model SG1/5G14 TS2
(SC15 LLVM HPC talk)

CUDA

texture<float, 2, cudaReadModeElementType> tex;
void foo() {
cudaArray* cu_array;
// Allocate array
cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
cudaMallocArray(&cu_array, &description, width, height);
// Copy image data to array

// Set texture parameters (default)
// Bind the array to the texture
// Run kernel

// Unbind the array from the texture

C++AMP

void AddArrays(int n, int m, int * pA, int * pB, int * pSum) {

concurrency::array_view<int,2>a(n, m, pA), b(n, m, pB),
sum(n, m, pSum);

concurrency::parallel_for_each(sum.extent,
[=](concurrency::index<2> i) restrict(amp)

{

sumli] = ali] + bli];

1);

C++11, 14, 17

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)

] &

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

_I AN é
“ File System TS J ' _....::..

Lib Fundamentals TS

Library TR (aka TS)

Parallelism TS= = Array TS

Performance TR

Concepts TS=!|| ™= Networking TS

Tx Memory TS="%* Concurrency TS

C++1Y(1Y=17 or 22) Concurrency Plan

Parallelism

Parallel STL Algorithms:
Data-Based Parallelism.
(Vector, SIMD, ...)
Task-based parallelism (cilk,
OpenMP, fork-join)
MapReduce

Pipelines

Concurrency

Future Extensions (then,
wait_any, wait_all):

Executors:

Resumable Functions, await (with
futures)

Counters

Queues

Concurrent Vector

Unordered Associative Containers
Latches and Barriers
upgrade_lock

Atomic smart pointers

Status after Oct Kona C++ Meeting

Project What's in it? Status
Filesystem TS Standard filesystem interface Published!
Library Fundamentals TS | optional, any, string_view and Published!
more
Library Fundamentals TS I source code information capture | Voted out for balloting by
and various utilities national standards bodies
Concepts (“Lite”) TS Constrained templates Publication imminent
Parallelism TS | Parallel versions of STL Published!
algorithms
Parallelism TS Il TBD. Exploring task blocks, Under active development
progress guarantees, SIMD
Transactional Memory TS Transactional Memory TS Published!

http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343�

Project

What's in it?

Status

Concurrency TS | improvements to future, latches | Voted out for publication!
and barriers, atomic smart
pointers

Concurrency TS Il TBD. Exploring executors, Under active development

synchronic types, atomic views,
concurrent data structures

Networking TS

Sockets library based on
Boost.ASIO

Design review completed;
wording review of the spec in
progress

Ranges TS Range-based algorithms and Design review completed;
views wording review of the spec in
progress
Numerics TS Various numerical facilities Beginning to take shape

Array Extensions TS

Stack arrays whose size is not
known at compile time

Direction given at last meeting;
waiting for proposals

Reflection

Code introspection and (later)
reification mechanisms

Still in the design stage, no ETA

Project What's in it? Status
2D drawing API Waiting on proposal
Graphics author to produce
P updated standard
wording

Modules A component system Microsoft and Clang

to supersede the continuing to iterate on

textual header file their implementations

inclusion model and converge on a
design. The feature will
targeta TS, not
C++17.

Coroutines Resumable functions At least two competing
designs. One of them
may make C++17.

Contracts Preconditions, In early design stage

postconditions, etc.

Agenda

e Clang/OpenMP Multi-company collaboration
e What Now?

e SG14

e C++ Std GPU Accelerator Model

43

The Birth of Study Group 14

Towards Improving C++ for Games & Low
Latency

. = —— ¥
-._‘h = - 2 pr =
= = = = =
- x —_— - = =
= =5 i £ =
— = - - -
e =
: P

Among the top users of C++!

10N,
f

B Finance Banking |l Games
B Front Office [l Telecoms [Electronics
M Investment Banking [l Marketing
@ Manufacturing I Retail

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

About SG14

oO0hkwhNE

About SG14

Control & Reliability
Metrics & Performance
Fun & Productivity
Current Efforts

The Future

The Breaking Wave: N4456

CppCon 2014

C++ committee panel leads to
CPREAN. impromptu game developer meeting.

Google Group created.

Discussions have outstanding industry
participation.

/TR Internationall Towards improved support for games,

ISO

Organization for N4456 graphics, real-time, low latency,
NS Standardization embedded systems

Formation of SG14

N4456 presented at Spring 2015
Standards Committee Meeting in
Lenexa.

Very well received!

SG14 Formation of Study Group 14
Game Dev & Low Latenc
Game Dev & V& Low y

Low Latency

Chair: Michael Wong (IBM)

Two SG14 meetings planned:
e CppCon 2015 (this Wednesday)
e GDC 2016, hosted by SONY

. . ISO/IEC JTC 1 () (F)DIS Approval
WG21 Organization
SC 22 (Prog. Langs) CD & PDTS Approval

WG21 - C++ Committee Internal Approval
Core WG Library WG Wording & Consistency
Evolution WG Lib Evolution WG Design & Target (IS/TS)

SG4 SG5
Networking Tx. Memory Domain Spec]ﬂc
Numerics Reflection Concepts Feature Test Developme nt

SG11 SG12 SG13 || 5614
Databases U. Behavior HMI Lgmf_atgxcy

SG1 SG2 NCE!

Concurrency Modules Filesystem

https://isocpp.org/std/the-committee

Improving Communication/Feedback/review cycle

< Standard C++ Committee members come to CPPCon/GDC (hosted by SONY)

SG14
Standard C++

Committee

Game Dev &
Low Latency

The Industry

Industry members come to CppCon/GDC >

Meetings are opportunities to present papers or discuss existing proposals
SG14 approved papers are presented by C++ Committee members at Standard meetings for voting
Feedback goes back through SG14 to industry for revision
Rinse and repeat

The Industry name linkage brings in lots of people

e The First Industry-named SG that gains
connection with
« Games
* Financial/Trading
e Banking
e Simulation
 +HPC/Big Data Analysis?

Audience of SG14 Goals and Scopes: Not just games!

Where We Are

Google Groups

https://groups.google.com/al/isocpp.org/forum/?fromqgroups#!forum/s
gl4
GitHub

https://qithub.com/WG21-SG14/SG14
Created by Guy Davidson

https://groups.google.com/a/isocpp.org/forum/?fromgroups�
https://groups.google.com/a/isocpp.org/forum/?fromgroups�
https://github.com/WG21-SG14/SG14�

SG14 are interested in following these proposals

GPU/Acccelerator support

Executors
» 3 ways: low-latency, parallel loops, server
task dispatch

Atomic views
Coroutines

noexcept library additions
* Use std::error_code for signaling errors
Early SIMD in C++ investigation

* There are existing SIMD papers
suggesting eg. “Vec<T,N>" and “for simd

G

Array View
Node-based Allocators
String conversions

hot set

vector and matrix
Exception and RTTI costs
Ring or circular buffers
Flat_map

Intrusive containers
Allocator interface
Radix sort

Spatial and geometric algorithms

Imprecise but faster alternatives for math algorithms

Cache-friendly hash table
Contiguous containers
Stack containers
Fixed-point numbers

plf::colonyand plf::stack

Agenda

e Clang/OpenMP Multi-company collaboration
e What Now?

e SG14

e C++ Std GPU Accelerator Model

56

C++ Standard GPU/Acelerators

e Attended by both National Labs and
commercial/consumers

eGlimpse into the future

eNo design as yet, but several competing
design candidates

e Offers the best chance of a model that works
across both domains for C++ (only)

Grand Unification?

- —pd ™

“Hello World” with std::thread

A simple function for thread to do...

Create and schedule thread...
Wait for thread to finish...

Avoiding errors / program termination...

#include <thread> (1) Thread function must do exception handling; unhandled
#include <iostream> exceptions ==> termination...

void func()

{

std: :cout << "**Hello world...\n";

}

int main()

{
std: :threa <
t = std::thread(func

(2) Must join, otherwise termination...

NOTE: avoid use of detach() in C++11, difficult to
use safely.

t.join();
return 0;

60

Example: saxpy @MM

eSaxpy == Scalar Alpha X Plus Y
—Scalar multiplication and vector addition

for (int i=0; i<n; i++)
z[1] = a * x[1] + y[i];

Sequential Matrix Multiplication

Il
I/ Naive, triply-nested sequential solution:
Il & |-
for (int i = 9; i < N; i++)
{ A B C
for (int j = 0; j < N; j++)
{
C[i][3] = e.e;

for (int k = 0; k < N; k++)
C[i][J] += (A[i][k] * B[k][31);

62

Structured ("fork-join") parallelism

eA common pattern when creating multiple threads

Sequential

L
L
L
.
......
LN
LN
LH
o

ann®

"
......
L

#include <vector>
std: :vector<std: :thread> threads;
int cores = std::thread::hardware_concurrency();

for (int i=0; i<cores; ++i) // 1 per core:
{
auto code = []() { DoSomeWork(); };
threads.push_back(thread(code));

}

for (std::thread& t : threads) // new range-based for:
t.join();

63

for (thread& t :

Going Parallel with C++11 by Joe _

What does C++ Standard

parallelism still need?
eParallelism alone is not enough for HPC...

--

HPC = Parallellsm + Memory Hlerarchy — Contentlong
Expose parallelism Minimize interaction:
: » false sharing
Maximize data locality: « locking
* network « synchronization
o disk
 RAM
« cache
e core

65

Asynchronous Calls

*Building blocks:

—std::async: Request asynchronous execution
of a function.

—Future: token representing function’s result.

*Unlike raw use of std::thread objects:

—Allows values or exceptions to be returned.

oJust like “normal” function calls.
66

WHAT IS A (THE) FUTURE

« A future is an object representing a result which has not been calculated yet

Locality 1 - Enables transparent
synchronization with producer

Seenia S - Hides notion of dealing with
consumer

thread

& Future: threadﬁ

r’l‘

Future object |, Locality 2
\
e
- |

Producer

i « Makes asynchrony manageable

Execute ||
i * PN : - Allows for composition of several
'S \ Result is being asynchronous operations

Resume returned

i ¢ - (Turns concurrency into
parallelism)

WHAT IS A (THE) FUTURE?

- Many ways to get hold of a future, simplest way 1s to use (std) async:

int universal answer() { return 42; }
void deep_ thought()
{
future<int?> promised answer = async(&universal answer);

// do other things for 7.5 million years

cout << promised answer.get() << endl; // prints 42, eventually

WAYS TO CREATE A FUTURE

« Standard defines 3 possible ways to create a future,

« 3 different ‘asynchronous providers
= std:;async
* See previous example, std:;async has caveats
« std::packaged_task
» std:.promise

Standard Concurrency Interfaces

o std: :async<>a nd std::future<>: concurrency as with sequential processing
—one location calls a concurrent task and dealing with the outcome is as simple as with local sub-functions
estd: :thread: |IOW-level approach

—one location calls a concurrent lask and has to provide low-level techniques to handle
the outcome

estd::promise<> and std::future<>: Simplify processing the outcome

—one location calls a concurrent task but dealing with the outcome is simplified

e packaged task<> : helper to separate task definition from call
—one location defines a task and provides a handle for the outcome
—another location decides when to call the task and the arguments

—the call must not necessarily happen in another thread

std::async + std::future

eUse async to start asynchronous operation

eUse returned future to wait upon result / exception

#include <future>

std: :future<int> f = std::async(

{

int result = PerformLongRunn

[10) -> in

e
.......
< o,

o
D

1naNneratisnf) o

return result;

}
)s

71

try

{
int x = f.get();

cout << x << endl;

}

catch(exception &e)

{

cout << "**Exception: "

}

WAIT

/[wait if necessary, harvest result:

<< e.what() << endl;

Async operations
eRun on current thread *or* a new thread
eBy default, system decides...

// runs on current thread when you “get” value (i.e. lazy execution):
future<T> f1 = std::async(std::launch::deferred, []() -> T {...});

// runs now on a new, dedicated thread:
future<T> 2 = std::async(std::launch::async, []() -> T {...});

/I let system decide (e.g. maybe you created enough work to keep system busy?):
future<T> f3 = std::async(M[]() -> T {...});

optional argument missing

72

Commercial application

Average rating...]

eNetflix data-mining...

N ChAWindows\system32\cmd.exe
== Netflix Data-mining Ap verage Rewview =+

Please enter movie id> 75
Searching. ..

NetﬂlX Data == L Time: 14.712 scf:s

** Num reviews: 1008

M|n|ng App *=* Average review: 3.50099

Press any key to continue . . .

73

Sequential solution

cin >> movielD;

vector<string> ratings

readFile("ratings.txt");

tuple<int,int> results = dataMine(ratings, movielID);

int numRatings

std: :get<@>(results);
std::get<1>(results);
double avgRating = double(numRatings) / _double(sumRatings):;

int sumRatings

dataMine(vector<string> &ratings, int id)
cout << numRatings << endl; {

cout << avgRating << endl; foreach rating

if ids match num++, sum += rating;

return tuple<int,int>(num, sum);

}

74

Parallel solution

dataMine(..., int begin, int end)
{
foreach rating in begin..end
if ids match num++, sum += rating;

return tuple<int,int>(num, sum);

}

Parallel with C++11 by Joe Hummel

Other things C++ need:
Types of parallelism
*Most common types:
—Data: coming in SIMD proposal
—Task: coming in executors and task blocks
—Embarrassingly parallel: async and threads

—Dataflow: Concurrency TS (.then)

76

EXTENDING STD::FUTURE

« Several proposals (draft technical specifications) for next C++ Standard
« Extension for future<>

« Compositional facilities
= Parallel composition
- Sequential composition
= Parallel Algorithms

= Parallel Task Regions

- Extended async semantics: dataflow

MAKE A READY FUTURE

» Create a future which is ready at construction (N3857)

future<int> compute(int x)

{

if (x < @) return make_ready future<int>(-1);

if (x == @) return make_ready future<int>(0);

return async([](int par) { return do work(par); }, x);

COMPOSITIONAL FACILITIES

« Sequential composition of futures (see N3857)

string make string()
{
future<int® f1 = async([]()} -* int { return 123; });
future<string® 2 = f1.then(
[1({future<int>) -> string {
return to string(f.get()); f/ here .get() won’t block

j3 5

COMPOSITIONAL FACILITIES

« Parallel composition of futures (see N385/7)

void test whem all() {
shared future<int> shared_futurel = async([]() -»> int { return 125; 1});
future<string: future2 = async([J(} -» string { return string("hi"); });

future<tuple<shared_future<int», futuredstring>>»» all f =
when_all(shared futurel, futurel); // also: when_any, when _some, etc.

future<int> result = all_f.then(
[1({future<tuple<shared future<inty, future<strings»> f) -3 int {
return do work(f.get());

1;

PARALLEL ALGORITHMS

« Parallel algorithms (N4071) -

= Mostly, same semantics as R sy _iE

Sount_Lr egqual erclualve_acan £ill

SE'q_uE'ntial al gorithmﬂ :'_'_'__!'. Find '_"_!'.:l_t!'.i :::'.:I_:'_:s:_:!

find 1f find if mpt far mach for_each_n

e F, FemaraTe _ 1n=lydes incluaive scen
= Addltlonal. flrst argument: ilooer praauct '_!_.'.\Eﬂ; '_!_.'.\t&;_i.‘l:.:'_‘_
3 + ! im partitioned im e ntil lexicographical conpare
execution_policy (seq, par, etc.) [ETEEE
mi=mstch

« ExXtension

= task_execution_policy
=et_symm=criz_difference

- Algorithm returns future<> scakle pertiuien swaiie sor > cranszors

r uninitislized copy_n unipitislized £11) uninitialized £ill n

EXTENDING ASYNC: DATAFLOW

What if one or more arguments to ‘async’ are futures themselves?
Normal behavior: pass futures through to function

Extended behavior: wait for futures to become ready before invoking the
function:

template <typename F, typename.. Arg>
future<typename result of<F({Args..)>»::type> dataftlow(F&& f, Argl&&. arg);

If ArgN is a future, then the invocation of F will be delayed

Non-future arguments are passed through

C++ Std+ proposals already have

many features for accelerators

e Asynchronous tasks (C++11 futures plus
C++17 then, when*, is_ready,...)

eParallel Algorithms
eExecutors
e Multi-dim arrays, Layouts

Candidates to C++ Std Accelerator

Model
o C++AMP

—Restrict keyword is a mistake
—GPU Hardware removing traditional hurdles

—Modern GPU instruction sets can handle nearly
full C++

—Memory systems evolving towards single heap

Better candidates

eGoal: Use standard C++ to express all intra-
node parallelism
—Agency extends Parallelism TS
—HCC
—SYCL extends Parallelism TS

Food for thought and Q/A

e C11/C++14 Standards
—C++: http://www.open-
std.org/jtcl/sc22/wg21/prot/14882fdis/n3937.pdf

—C++ (post C++14 free version): http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2014/n4296.pdf

—C: http://www.open-std.org/jtcl/sc22/wgld/www/docs/n1570.pdf
* Participate and feedback to Compiler

—What features/libraries interest you or your customers?

—What problem/annoyance you would like the Std to resolve?

—Is Special Math important to you?

—Do you expect Ox features to be used quickly by your customers?

* Talk to me at my blog:
—http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

My blogs and email address

* ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong
OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status: http://tinyurl.com/43y8xgf
Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJTIL&
uid=swg27006911
C/C++ Compilers Feature Request Page
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
Chair of WG21 SG5 Transactional Memory:
https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgroups#!f
orum/tm
Chair of WG21 SG14 Games Dev/Low Latency:
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/s
glg

	The Future of GPU/Accelerator Programming Models
	Acknowledgement and Disclaimer
	Legal Disclaimer
	Agenda
	OpenMP Mission Statement changed in 2013
	OpenMP in Clang update
	Many Participants/companies
	The codebase
	Offloading in OpenMP – Impl. components
	Offloading in OpenMP – Impl. components
	Clang with OpenMP
	Offloading in Clang: Current Status
	heterogeneous device model
	Data mapping: shared or distributed memory
	OpenMP 4.0 Device Constructs
	SAXPY: Serial (host)
	SAXPY: Serial (host)
	SAXPY: Coprocessor/Accelerator
	SAXPY: Coprocessor/Accelerator
	Building Fat Binary
	Heterogeneous Execution of�Fat Binary
	Libomptarget and offload RTL
	What did we learn?
	Future plans
	Slide Number 25
	Slide Number 26
	Agenda
	What now?
	A tale of two cities
	Will the two galaxies ever join?
	Slide Number 31
	What did we learn from the OpenMP Accelerator model?
	Its like the difference between:
	C++ support for Accelerators
	Programming GPU/Accelerators
	CUDA
	C++AMP
	C++11, 14, 17
	C++1Y(1Y=17 or 22) Concurrency Plan
	Status after Oct Kona C++ Meeting
	Slide Number 41
	Slide Number 42
	Agenda
	The Birth of Study Group 14
	Slide Number 45
	Among the top users of C++!
	About SG14
	The Breaking Wave: N4456
	Formation of SG14
	Slide Number 50
	Improving Communication/Feedback/review cycle
	The Industry name linkage brings in lots of people
	Audience of SG14 Goals and Scopes: Not just games!
	Where We Are	
	SG14 are interested in following these proposals
	Agenda
	C++ Standard GPU/Acelerators
	Grand Unification?
	“Hello World” with std::thread
	Avoiding errors / program termination…
	Example: saxpy
	Sequential Matrix Multiplication
	Structured ("fork-join") parallelism
	Parallel solution
	What does C++ Standard parallelism still need?
	Asynchronous Calls
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Standard Concurrency Interfaces
	std::async + std::future
	Async operations
	Commercial application
	Sequential solution
	Parallel solution
	Other things C++ need:�Types of parallelism
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	C++ Std+ proposals already have many features for accelerators
	Candidates to C++ Std Accelerator Model
	Better candidates
	Food for thought and Q/A
	My blogs and email address

