
The Future of GPU/Accelerator
Programming Models

LLVM HPC 2015

Michael Wong (IBM)
michaelw@ca.ibm.com; http:://wongmichael.com
http://isocpp.org/wiki/faq/wg21:michael-wong
IBM and Canadian C++ Standard Committee HoD
OpenMP CEO
Chair of WG21 SG5 Transactional Memory , SG14 Games/Low Latency
Director, Vice President of ISOCPP.org
Vice Chair Standards Council of Canada Programming Languages

mailto:michaelw@ca.ibm.com�

Acknowledgement and Disclaimer
�Numerous people internal and external to the
original OpenMP group, in industry and academia,
have made contributions, influenced ideas,
written part of this presentations, and offered
feedbacks to form part of this talk.
�I even lifted this acknowledgement and
disclaimer from some of them.
�But I claim all credit for errors, and stupid
mistakes. These are mine, all mine!
�

Legal Disclaimer
�This work represents the view of the author and
does not necessarily represent the view of IBM.
�IBM, PowerPC and the IBM logo are trademarks
or registered trademarks of IBM or its
subsidiaries in the United States and other
countries.
�Other company, product, and service names
may be trademarks or service marks of others.

4

Agenda
• Clang/OpenMP Multi-company collaboration
• What Now?
• SG14
• C++ Std GPU Accelerator Model

OpenMP Mission Statement
changed in 2013

•OpenMP’s new mission statement
–“Standardize directive-based multi-language high-
level parallelism that is performant, productive
and portable”

–Updated from
•"Standardize and unify shared memory, thread-level
parallelism for HPC”

5

OpenMP in Clang update
•I Chair Weekly OpenMP Clang review WG (Intel, IBM, AMD, TI, Micron) to

help speedup OpenMP upstream into clang: April 2015-on going
–Joint code reviews, code refactoring
–Delivered full OpenMP 3.1 into Clang 3.7 (default lib is still GCC OpenMP)
–Added U of Houston OpenMP tests into clang
–IBM team Delivered changes for OpenMP RT for PPC, other teams added their

platform/architecture
–Released Joint design on Multi-device target interface for LLVM to llvm-dev

for comment

–LLVM developer Conf Oct 2015 talk:
• http://llvm.org/devmtg/2015-10/slides/WongBataev-OpenMPGPUAcceleratorsComingOfAgeInClang.pdf

• https://www.youtube.com/watch?v=dCdOaL3asx8&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21&index
=18

Many Participants/companies
•Ajay Jayaraj, TI
•Alexander Musman, Intel
•Alex Eichenberger, IBM
•Alexey Bataev, Intel
•Andrey Bokhanko, Intel
•Carlo Bertolli, IBM
•Eric Stotzer, TI
•Guansong Zhang, AMD
•Hal Finkel, ANL
•Ilia Verbyn, Intel
•James Cownie, Intel
•Yaoqing Gao, IBM

•Kelvin Li, IBM
•Kevin O’Brien, IBM
•Samuel Antao, IBM
•Sergey Ostanevich, Intel
•Sunita Chandrasekaran, UH
•Michael Wong, IBM
•Wang Chan, IBM
•Robert Ho, IBM
•Wael Yehia, IBM
•Ettore Tiotto, IBM
•Melanie Ullmer, IBM
•Kevin Smith, Intel

The codebase

• How to use it:

– Grab the latest source files and install LLVM as usual

– Use the right options to specify host and target machines, e.g.:

$ clang –fopenmp –target powerpc64le-ibm-linux-gnu –mcpu pwr8
 –omptargets=nvptx64sm_35-nvidia-cuda <source files>

LLVM main repository
http://llvm.org

Version 3.5

Version 3.7

Clang-OMP repository
http://clang-omp.github.io

Initial version

Current version

Clang/LLVM
snapshot

Added OpenMP
features to Clang All OpenMP 3.1

merged

OpenMP 4
offloading
support

Version 3.8 Trunk Now merging
OpenMP 4.0

OpenMP
4.5
support

Offloading in OpenMP – Impl. components
OpenMP
enabled
compiler

Input
Program

C/C++

Fat binary
Device
code

Host
code

Host runtime library

Device runtime
library

Operating System

Device
Driver

Host
component

Target agnostic
component

Target API

Host
machine

Device

Device

Offloading in OpenMP – Impl.
components OpenMP

enabled
compiler

Input

Program

C/C++

Fat binary
Device
code

Host
code

Host runtime library

Device runtime
library

Operating System

Device
Driver

Host
component

Target agnostic
component

Target API

Host
machine

Device

Device

Clang

K40

Clang with OpenMP
• Compiler actions:

– Driver preprocesses input source files using
host/target preprocessor

• Header files may be in different places

• We may revisit this in the future

– For each source file, the driver spawns a job
using the host toolchain and an additional job
for each target specified by the user

– Flags informing the frontend that we are
compiling code for a target so only the relevant
target regions are considered

– Target linker creates a self-contained (no
undefined symbols) image file

– Target image file is embedded “as is” by the
host linker into the host fat binary

– The host linker is provided with information to
generate the symbols required by the RTL

a.cpp

FatBin

b.cpp

Host
Preproc.

Host
Preproc.

Host
Compiler

Host
Compiler

Target
Compiler

Target
Compiler

Host
Assemble

r

Host
Assemble

r

Target
Assemble

r

Target
Assemble

r
Target
Linker Host

linker

Device
RTL Host

RTL

Target
Compiler

Target
Compiler

Offloading in Clang: Current Status
•Initial implementation available at
https://github.com/clang-omp/clang_trunk

•First patches are committed to trunk
– Support for target constructs parsing/sema/codegen for host

•Several patches are under review
–Support for new driver option
–Offloading descriptor registration and device codegen

https://github.com/clang-omp/clang_trunk�

13

heterogeneous device model
• OpenMP 4.0 supports accelerators/coprocessors
• Device model:

– one host
– multiple acclerators / coprocessors of the same kind

14

Data mapping: shared or distributed memory

A

Memory

Processor Y

Cache

A

Processor X

Cache

A

A

Memory X
Accelertor Y

A

Memory Y
Processor X

Cache

A

Shared memory

Distributed memory

• The corresponding variable in the
device data environment may share
storage with the original variable.

• Writes to the corresponding variable

may alter the value of the original
variable.

OpenMP 4.0 Device Constructs
• Execute code on a target device

– omp target [clause[[,] clause],…]
structured-block

– omp declare target
[function-definitions-or-declarations]

• Map variables to a target device
– map ([map-type:] list) // map clause

map-type := alloc | tofrom | to | from

– omp target data [clause[[,] clause],…]
structured-block

– omp target update [clause[[,] clause],…]
– omp declare target
[variable-definitions-or-declarations]

• Workshare for acceleration
– omp teams [clause[[,] clause],…]

structured-block
– omp distribute [clause[[,] clause],…]

for-loops

15

16

SAXPY: Serial (host)

17

SAXPY: Serial (host)

18

SAXPY:
Coprocessor/Accelerator

19

SAXPY:
Coprocessor/Accelerator

Building Fat Binary
• Clang generates objects for each target
• Target toolchains combine objects into target-

dependent binaries
• Host linker combines host + target-dependent binaries

into an executable (Fat Binary)
• New driver command-line option

-omptargets=T1,…,Tn
clang -fopenmp -omptargets=nvptx64-nvidia-cuda,x86-pc-linux-gnu foo.c bar.c -o
foobar.bin

Fat Binary

LLVM
Generated
host code

Data
Xeon Phi Code
GPU Code
DSP Code

Heterogeneous Execution of
Fat Binary

Fat Binary

LLVM
Generated host

code

Data

Xeon Phi Code

GPU Code

DSP Code

libomptarget
library

Xeon Phi offload
RTL

GPU offload RTL

DSP offload RTL

Xeon
Phi

GPU

DSP

Libomptarget and offload RTL
• Source code available at https://github.com/clang-

omp/libomptarget
• Planned to be upstreamed
• Supported platforms

– libomptarget
• Platform neutral implementation (tested on Linux for x86-64, PowerPC*)
• NVIDIA* (Tested with CUDA* compilation tools V7.0.27)

– Offload target RTL
• x86-64, PowerPC, NVIDIA

*Other names and brands may be claimed as the property of others.

https://github.com/clang-omp/libomptarget�
https://github.com/clang-omp/libomptarget�

What did we learn?
•Multi-Vendor/University collaboration works
even outside of ISO
•Support separate vendor-dependent target
RTL to enable other programming models
•Production compilers need support for L10N
and I18N for multiple countries and languages

Future plans
•Clang 3.8 (~Feb, 2016): trunk switches to clang OpenMP lib,

upstream OpenMP 4.0 with focus on Accelerator delivery; start
code dropping for OpenMP 4.5

•Clang 3.9 (~Aug 2016): Complete OpenMP 4.0 and continue to Add
OpenMP 4.5 functionality

•Clang 4.0 (~Feb 2017): clang/llvm becomes reference compiler;
follow OpenMP ratification with collaborated contribution?

2017

Today

2013 2014 2015 2016 2017

OpenMP 4.0 Ratified/Release
11/12/2013

C++14 Ratify
5/31/2014

Clang 3.5 Release
8/31/2014

C++14 Implemented in Clang 3.5
9/3/2014

C++14 Released
12/31/2014

OpenMP 4.5 Ratified/Release
11/12/2015

C++17
Implemented
in Clang 4.0?
2/28/2017

Clang 4.0 becomes OpenMP
reference compiler and tracks
OpenMP closely?
2/28/2017

C++17 Ratify?
5/31/2017

OpenMP 5.0
Ratified/Release?
11/12/2017

C++17
Release?
12/31/2017

Clang 3.6 Release
2/28/2015

Clang 3.7
Release

8/31/2015

Clang 3.9 Release?

8/31/2016

Clang 4.0
Release?

2/28/2017

Clang 3.8
Release

2/29/2016

2017

Today

2013 2014 2015 2016 2017

OpenMP 4.0 Ratified/Release
11/12/2013

C++14 Ratify
5/31/2014

Clang 3.5 Release
8/31/2014

C++14 Implemented in Clang 3.5
9/3/2014

C++14 Released
12/31/2014

Clang 3.6 Release
2/28/2015

Clang 3.7
Release
8/31/2015

OpenMP 4.5 Ratified/Release
11/12/2015

Clang 3.8 Release?
2/29/2016

Clang 3.9
Release?
8/31/2016

Clang 4.0
Release?
2/28/2017

C++17
Implemented
in Clang 4.0?
2/28/2017

Clang 4.0 becomes OpenMP
reference compiler and tracks
OpenMP closely?
2/28/2017

C++17 Ratify?
5/31/2017

OpenMP 5.0
Ratified/Release?
11/12/2017

C++17
Release?
12/31/2017

5/1/2014
Upstream OpenMP 3.1 to clang 3.5, 3.6, 3.7 from Intel OpenMP/clang

8/31/2015

9/1/2015
Upstream OpenMP 4.0 to clang 3.8, 3.9? from Intel OpenMP/clang

8/31/2016

11/1/2015
Direct code drop of OpenMP 4.5 to clang 3.8, 3.9, 4.0?

2/28/2017

27

Agenda
• Clang/OpenMP Multi-company collaboration
• What Now?
• SG14
• C++ Std GPU Accelerator Model

What now?
•The new C++11 Std is

–1353 pages compared to 817 pages in C++03

•The new C++14 Std is
–1373 pages (N3937), vs the free n3972

•The new C11 is
–701 pages compared to 550 pages in C99

•OpenMP 3.1 is
–160 pages and growing

•OpenMP 4.0 is
–320 pages

•OpenMP 4.5 is
–359 pages

A tale of two cities

Will the two galaxies ever join?

What did we learn from the
OpenMP Accelerator model?

•Consumer threads needed
•More concurrency controls needed
•Excellent HPC domain usage
•Some use in financials
•but almost none in consumers and
commercial applications
•C++ support? Can it get better?

Its like the difference between:
An Aircraft Carrier Battle Group (ISO)
And a Cruiser (Consortium: OpenMP)
And a Destroyer (Company Specific

language)

C++ support for Accelerators
•Memory allocation
•Templates
•Exceptions
•Polymorphism
•Current Technical Specifications

–Concepts, Parallelism, Concurrency, TM

Programming GPU/Accelerators
• OpenGL
• DirectX
• CUDA
• OpenCL
• OpenMP
• OpenACC
• C++ AMP
• HPX

•HSA
• SYCL
•Vulkan
•A preview of C++

WG21 Accelerator
model SG1/SG14 TS2
(SC15 LLVM HPC talk)

CUDA
texture<float, 2, cudaReadModeElementType> tex;
void foo() {
 cudaArray* cu_array;
 // Allocate array
 cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
 cudaMallocArray(&cu_array, &description, width, height);
 // Copy image data to array
 …
 // Set texture parameters (default)
 …
 // Bind the array to the texture
 …
 // Run kernel
 …
 // Unbind the array from the texture
}

C++AMP

void AddArrays(int n, int m, int * pA, int * pB, int * pSum) {
 concurrency::array_view<int,2> a(n, m, pA), b(n, m, pB),

sum(n, m, pSum);
 concurrency::parallel_for_each(sum.extent,

[=](concurrency::index<2> i) restrict(amp)
 {
 sum[i] = a[i] + b[i];
 });
}

C++11, 14, 17

C++1Y(1Y=17 or 22) Concurrency Plan
Parallelism
Parallel STL Algorithms:
Data-Based Parallelism.
(Vector, SIMD, ...)
Task-based parallelism (cilk,
OpenMP, fork-join)
MapReduce
Pipelines

Concurrency
Future Extensions (then,
wait_any, wait_all):
Executors:
Resumable Functions, await (with
futures)
Counters
Queues
Concurrent Vector
Unordered Associative Containers
Latches and Barriers
upgrade_lock
Atomic smart pointers

Status after Oct Kona C++ Meeting
 Project What’s in it? Status

Filesystem TS Standard filesystem interface Published!

Library Fundamentals TS I optional, any, string_view and
more

Published!

Library Fundamentals TS II source code information capture
and various utilities

Voted out for balloting by
national standards bodies

Concepts (“Lite”) TS Constrained templates Publication imminent

Parallelism TS I Parallel versions of STL
algorithms

Published!

Parallelism TS II TBD. Exploring task blocks,
progress guarantees, SIMD

Under active development

Transactional Memory TS Transactional Memory TS Published!

http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343�

Project What’s in it? Status

Concurrency TS I improvements to future, latches
and barriers, atomic smart
pointers

Voted out for publication!

Concurrency TS II TBD. Exploring executors,
synchronic types, atomic views,
concurrent data structures

Under active development

Networking TS Sockets library based on
Boost.ASIO

Design review completed;
wording review of the spec in
progress

Ranges TS Range-based algorithms and
views

Design review completed;
wording review of the spec in
progress

Numerics TS Various numerical facilities Beginning to take shape

Array Extensions TS Stack arrays whose size is not
known at compile time

Direction given at last meeting;
waiting for proposals

Reflection Code introspection and (later)
reification mechanisms

Still in the design stage, no ETA

Project What’s in it? Status

Graphics

2D drawing API Waiting on proposal
author to produce
updated standard
wording

Modules A component system
to supersede the
textual header file
inclusion model

Microsoft and Clang
continuing to iterate on
their implementations
and converge on a
design. The feature will
target a TS, not
C++17.

Coroutines Resumable functions At least two competing
designs. One of them
may make C++17.

Contracts Preconditions,
postconditions, etc.

In early design stage

43

Agenda
• Clang/OpenMP Multi-company collaboration
• What Now?
• SG14
• C++ Std GPU Accelerator Model

The Birth of Study Group 14

Towards Improving C++ for Games & Low
Latency

Among the top users of C++!

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

About SG14
1. About SG14
2. Control & Reliability
3. Metrics & Performance
4. Fun & Productivity
5. Current Efforts
6. The Future

The Breaking Wave: N4456

CppCon 2014

C++ committee panel leads to
impromptu game developer meeting.

Google Group created.

Discussions have outstanding industry
participation.

N4456 authored and published!

Formation of SG14

N4456 presented at Spring 2015
Standards Committee Meeting in

Lenexa.

Very well received!

Formation of Study Group 14:
Game Dev & Low Latency

Chair: Michael Wong (IBM)

Two SG14 meetings planned:
● CppCon 2015 (this Wednesday)
● GDC 2016, hosted by SONY

https://isocpp.org/std/the-committee

Improving Communication/Feedback/review cycle

SG14
Game Dev &
Low Latency

The Industry Standard C++
Committee

Industry members come to CppCon/GDC

Standard C++ Committee members come to CPPCon/GDC (hosted by SONY)

Meetings are opportunities to present papers or discuss existing proposals
SG14 approved papers are presented by C++ Committee members at Standard meetings for voting

Feedback goes back through SG14 to industry for revision
Rinse and repeat

The Industry name linkage brings in lots of people

• The First Industry-named SG that gains
connection with

• Games
• Financial/Trading
• Banking
• Simulation
• +HPC/Big Data Analysis?

Shared Common Interest
Better support in C++ for:

Audience of SG14 Goals and Scopes: Not just games!

Video Games

Interactive Simulation

Low Latency
Computation

Constrained
Resources

Real-time Graphics

Simulation and
Training Software

Finance/Trading

Embedded Systems

HPC/BigData Analytic
workload

Where We Are

Google Groups

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/s
g14

GitHub

https://github.com/WG21-SG14/SG14
Created by Guy Davidson

https://groups.google.com/a/isocpp.org/forum/?fromgroups�
https://groups.google.com/a/isocpp.org/forum/?fromgroups�
https://github.com/WG21-SG14/SG14�

SG14 are interested in following these proposals
• GPU/Acccelerator support
• Executors

• 3 ways: low-latency, parallel loops, server
task dispatch

• Atomic views
• Coroutines

• noexcept library additions

• Use std::error_code for signaling errors

• Early SIMD in C++ investigation

• There are existing SIMD papers
suggesting eg. “Vec<T,N>” and “for simd
(;;)”

• Array View
• Node-based Allocators
• String conversions
• hot set
• vector and matrix
• Exception and RTTI costs
• Ring or circular buffers
• Flat_map
• Intrusive containers
• Allocator interface
• Radix sort

● Spatial and geometric algorithms

● Imprecise but faster alternatives for math algorithms

● Cache-friendly hash table

● Contiguous containers

● Stack containers

● Fixed-point numbers

● plf::colony and plf::stack

56

Agenda
• Clang/OpenMP Multi-company collaboration
• What Now?
• SG14
• C++ Std GPU Accelerator Model

C++ Standard GPU/Acelerators
•Attended by both National Labs and
commercial/consumers
•Glimpse into the future
•No design as yet, but several competing
design candidates
•Offers the best chance of a model that works
across both domains for C++ (only)

Grand Unification?

“Hello World” with std::thread

59

#include <thread>
#include <iostream>

void func()
{
 std::cout << "**Inside thread "
 << std::this_thread::get_id() << "!" << std::endl;
}

int main()
{
 std::thread t;
 t = std::thread(func);

 t.join();
 return 0;
}

A simple function for thread to do…

Create and schedule thread…

Wait for thread to finish…

Avoiding errors / program termination…

60

#include <thread>
#include <iostream>

void func()
{
 std::cout << "**Hello world...\n";
}

int main()
{
 std::thread t;
 t = std::thread(func);

 t.join();
 return 0;
}

(1) Thread function must do exception handling; unhandled
exceptions ==> termination…

void func()
{
 try
 {
 // computation:
 }
 catch(...)
 {
 // do something:
 }
}

(2) Must join, otherwise termination…

NOTE: avoid use of detach() in C++11, difficult to
use safely.

Going Parallel with C++11 by Joe Hummel

•Saxpy == Scalar Alpha X Plus Y
–Scalar multiplication and vector addition

61

Example: saxpy
x
y
z

for (int i=0; i<n; i++)
 z[i] = a * x[i] + y[i];

int start = …;
int end = …;
for (int t=0; t<NumThreads; t++)
{
 thread(
 [&z,x,y,a,start,end]() -> void
 {
 for (int i = start; i < end; i++)
 z[i] = a * x[i] + y[i];
 }
);

 start += …;
 end += …;
}

Parallel

62

Sequential Matrix Multiplication
//
// Naïve, triply-nested sequential solution:
//
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 C[i][j] = 0.0;

 for (int k = 0; k < N; k++)
 C[i][j] += (A[i][k] * B[k][j]);
 }
}

Going Parallel with C++11 by Joe Hummel

•A common pattern when creating multiple threads

63

Structured ("fork-join") parallelism

fork

join

Sequential

Sequential

Parallel

#include <vector>

std::vector<std::thread> threads;

int cores = std::thread::hardware_concurrency();

for (int i=0; i<cores; ++i) // 1 per core:
{
 auto code = []() { DoSomeWork(); };
 threads.push_back(thread(code));
}

for (std::thread& t : threads) // new range-based for:
 t.join();

Going Parallel with C++11 by Joe Hummel

64

Parallel solution
int rows = N / numthreads;
int extra = N % numthreads;
int start = 0; // each thread does [start..end)
int end = rows;
vector<thread> workers;
for (int t = 1; t <= numthreads; t++)
{
 if (t == numthreads) // last thread does extra rows:
 end += extra;
 workers.push_back(thread([start, end, N, &C, &A, &B]()
 {
 for (int i = start; i < end; i++)
 for (int j = 0; j < N; j++)
 {
 C[i][j] = 0.0;
 for (int k = 0; k < N; k++)
 C[i][j] += (A[i][k] * B[k][j]);
 }
 }));

 start = end;
 end = start + rows;
}

for (thread& t : workers)
 t.join();

// 1 thread per core:
numthreads = thread::hardware_concurrency();

Going Parallel with C++11 by Joe Hummel

•Parallelism alone is not enough for HPC…

65

What does C++ Standard
parallelism still need?

HPC == Parallelism + Memory Hierarchy ─ Contention

Expose parallelism

Maximize data locality:
• network
• disk
• RAM
• cache
• core

Minimize interaction:
• false sharing
• locking
• synchronization

Going Parallel with C++11 by Joe Hummel

Asynchronous Calls
•Building blocks:

–std::async: Request asynchronous execution
of a function.

–Future: token representing function’s result.
•Unlike raw use of std::thread objects:

–Allows values or exceptions to be returned.
•Just like “normal” function calls.

IBM 66

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Standard Concurrency Interfaces
•std::async<>and std::future<>: concurrency as with sequential processing

– one location calls a concurrent task and dealing with the outcome is as simple as with local sub-functions

•std: :thread: lOW-level approach
–one location calls a concurrent lask and has to provide low-level techniques to handle

the outcome

•std::promise<> and std::future<>: Simplify processing the outcome
– one location calls a concurrent task but dealing with the outcome is simplified

•packaged_task<> : helper to separate task definition from call
– one location defines a task and provides a handle for the outcome

– another location decides when to call the task and the arguments

– the call must not necessarily happen in another thread

•Use async to start asynchronous operation
•Use returned future to wait upon result / exception

71

std::async + std::future

#include <future>

std::future<int> f = std::async([]() -> int
 {
 int result = PerformLongRunningOperation();
 return result;
 }
);
.
.

try
{
 int x = f.get(); // wait if necessary, harvest result:
 cout << x << endl;
}
catch(exception &e)
{
 cout << "**Exception: " << e.what() << endl;
}

START

WAIT

lambda return type…

Going Parallel with C++11 by Joe Hummel

•Run on current thread *or* a new thread
•By default, system decides…

–based on current load, available cores, etc.

72

Async operations

// runs on current thread when you “get” value (i.e. lazy execution):
future<T> f1 = std::async(std::launch::deferred, []() -> T {...});

// runs now on a new, dedicated thread:
future<T> f2 = std::async(std::launch::async, []() -> T {...});

// let system decide (e.g. maybe you created enough work to keep system busy?):
future<T> f3 = std::async([]() -> T {...});

 optional argument missing

Going Parallel with C++11 by Joe Hummel

•Netflix data-mining…

73

Commercial application

Netflix
Movie

Reviews
(.txt)

Netflix Data
Mining App

Average rating…

Going Parallel with C++11 by Joe Hummel

74

Sequential solution
cin >> movieID;

vector<string> ratings = readFile("ratings.txt");

tuple<int,int> results = dataMine(ratings, movieID);

int numRatings = std::get<0>(results);
int sumRatings = std::get<1>(results);
double avgRating = double(numRatings) / double(sumRatings);

cout << numRatings << endl;
cout << avgRating << endl;

dataMine(vector<string> &ratings, int id)
{
 foreach rating
 if ids match num++, sum += rating;

 return tuple<int,int>(num, sum);
}

Going Parallel with C++11 by Joe Hummel

75

Parallel solution
int chunksize = ratings.size() / numthreads;
int leftover = ratings.size() % numthreads;
int begin = 0; // each thread does [start..end)
int end = chunksize;

vector<future<tuple<int,int>>> futures;

for (int t = 1; t <= numthreads; t++)
{
 if (t == numthreads) // last thread does extra rows:
 end += leftover;

 futures.push_back(
 async([&ratings, movieID, begin, end]() -> tuple<int,int>
 {
 return dataMine(ratings, movieID, begin, end);
 })
);

 begin = end;
 end = begin + chunksize;
}

for (future<tuple<int,int>> &f: futures)
{
 tuple<int, int> t = f.get();
 numRatings += std::get<0>(t);
 sumRatings += std::get<1>(t);
}

dataMine(..., int begin, int end)
{
 foreach rating in begin..end
 if ids match num++, sum += rating;

 return tuple<int,int>(num, sum);
}

Going Parallel with C++11 by Joe Hummel

•Most common types:
–Data: coming in SIMD proposal

–Task: coming in executors and task blocks

–Embarrassingly parallel: async and threads

–Dataflow: Concurrency TS (.then)

76

Other things C++ need:
Types of parallelism

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

C++ Std+ proposals already have
many features for accelerators

•Asynchronous tasks (C++11 futures plus
C++17 then, when*, is_ready,…)
•Parallel Algorithms
•Executors
•Multi-dim arrays, Layouts

Candidates to C++ Std Accelerator
Model

•C++AMP
–Restrict keyword is a mistake
–GPU Hardware removing traditional hurdles
–Modern GPU instruction sets can handle nearly
full C++

–Memory systems evolving towards single heap

Better candidates
•Goal: Use standard C++ to express all intra-
node parallelism

–Agency extends Parallelism TS
–HCC
–SYCL extends Parallelism TS

Food for thought and Q/A
• C11/C++14 Standards

–C++ : http://www.open-
std.org/jtc1/sc22/wg21/prot/14882fdis/n3937.pdf

–C++ (post C++14 free version): http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

–C: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
• Participate and feedback to Compiler

–What features/libraries interest you or your customers?
–What problem/annoyance you would like the Std to resolve?
–Is Special Math important to you?
–Do you expect 0x features to be used quickly by your customers?

• Talk to me at my blog:
–http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

 86

My blogs and email address

• ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong
OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status: http://tinyurl.com/43y8xgf
Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&
uid=swg27006911
C/C++ Compilers Feature Request Page
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
Chair of WG21 SG5 Transactional Memory:
https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgroups#!f
orum/tm
Chair of WG21 SG14 Games Dev/Low Latency:
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/s
g14

87

	The Future of GPU/Accelerator Programming Models
	Acknowledgement and Disclaimer
	Legal Disclaimer
	Agenda
	OpenMP Mission Statement changed in 2013
	OpenMP in Clang update
	Many Participants/companies
	The codebase
	Offloading in OpenMP – Impl. components
	Offloading in OpenMP – Impl. components
	Clang with OpenMP
	Offloading in Clang: Current Status
	heterogeneous device model
	Data mapping: shared or distributed memory
	OpenMP 4.0 Device Constructs
	SAXPY: Serial (host)
	SAXPY: Serial (host)
	SAXPY: Coprocessor/Accelerator
	SAXPY: Coprocessor/Accelerator
	Building Fat Binary
	Heterogeneous Execution of�Fat Binary
	Libomptarget and offload RTL
	What did we learn?
	Future plans
	Slide Number 25
	Slide Number 26
	Agenda
	What now?
	A tale of two cities
	Will the two galaxies ever join?
	Slide Number 31
	What did we learn from the OpenMP Accelerator model?
	Its like the difference between:
	C++ support for Accelerators
	Programming GPU/Accelerators
	CUDA
	C++AMP
	C++11, 14, 17
	C++1Y(1Y=17 or 22) Concurrency Plan
	Status after Oct Kona C++ Meeting
	Slide Number 41
	Slide Number 42
	Agenda
	The Birth of Study Group 14
	Slide Number 45
	Among the top users of C++!
	About SG14
	The Breaking Wave: N4456
	Formation of SG14
	Slide Number 50
	Improving Communication/Feedback/review cycle
	The Industry name linkage brings in lots of people
	Audience of SG14 Goals and Scopes: Not just games!
	Where We Are	
	SG14 are interested in following these proposals
	Agenda
	C++ Standard GPU/Acelerators
	Grand Unification?
	“Hello World” with std::thread
	Avoiding errors / program termination…
	Example: saxpy
	Sequential Matrix Multiplication
	Structured ("fork-join") parallelism
	Parallel solution
	What does C++ Standard parallelism still need?
	Asynchronous Calls
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Standard Concurrency Interfaces
	std::async + std::future
	Async operations
	Commercial application
	Sequential solution
	Parallel solution
	Other things C++ need:�Types of parallelism
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	C++ Std+ proposals already have many features for accelerators
	Candidates to C++ Std Accelerator Model
	Better candidates
	Food for thought and Q/A
	My blogs and email address

